home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
sgerqf.z
/
sgerqf
Wrap
Text File
|
1996-03-14
|
3KB
|
133 lines
SSSSGGGGEEEERRRRQQQQFFFF((((3333FFFF)))) SSSSGGGGEEEERRRRQQQQFFFF((((3333FFFF))))
NNNNAAAAMMMMEEEE
SGERQF - compute an RQ factorization of a real M-by-N matrix A
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE SGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
INTEGER INFO, LDA, LWORK, M, N
REAL A( LDA, * ), TAU( * ), WORK( LWORK )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
SGERQF computes an RQ factorization of a real M-by-N matrix A: A = R *
Q.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A. On exit, if m <= n, the upper
triangle of the subarray A(1:m,n-m+1:n) contains the M-by-M upper
triangular matrix R; if m >= n, the elements on and above the
(m-n)-th subdiagonal contain the M-by-N upper trapezoidal matrix
R; the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(m,n) elementary
reflectors (see Further Details). LDA (input) INTEGER The
leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M). For optimum
performance LWORK >= M*NB, where NB is the optimal blocksize.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
PPPPaaaaggggeeee 1111
SSSSGGGGEEEERRRRQQQQFFFF((((3333FFFF)))) SSSSGGGGEEEERRRRQQQQFFFF((((3333FFFF))))
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
PPPPaaaaggggeeee 2222